Внутренняя норма доходности инвестиционного проекта: формула
Содержание статьи
Внутренняя норма доходности инвестиционного проекта: формула
Инвестиция это долгосрочное вложение капитала во что-либо с целью получения эффекта. Этот эффект может носить социальный характер и экономический. Экономический эффект от инвестиции называется прибыль.
Процентные ставки, которые необходимы для расчета целесообразности инвестиций
В финансовой математике существует три вида процентных ставок, которые применяет инвестор при расчете целесообразности своих вложений. Первая ставка – это внутренняя норма доходности инвестиционного проекта (ВНД). Данный индекс показывает, какой процент необходимо взять при расчете эффективности инвестиций.
Вторая процентная ставка – сам калькуляционный процент. Это ставка, которую инвестор закладывает в свой расчет.
Третий показатель называется «внутренний процент». Он показывает, насколько окупилась инвестиция в процентах.
Разница между ВНД инвестиционного проекта, внутренним и калькуляционным процентами
Все вышеперечисленные показатели могут быть равны, а могут и отличаться. Если рассчитать внутреннюю норму доходности инвестиционного проекта, можно увидеть, что эти три процентные ставки не всегда имеют одинаковое значение.
Все дело в том, что при калькуляционном проценте вкладчик может получить как прибыль, так и убыток в целом и по сравнению с альтернативным способом использования средств. Внутренняя норма доходности инвестиционного проекта показывает процент, при котором инвестор не получает ни убытка, ни прибыли. Если чистая стоимость выше нуля, это значит, что процент, заложенный в расчет эффективности инвестиций, ниже коэффициента окупаемости. В том случае, когда чистая стоимость ниже нуля, калькуляционный процент превышает ВНД инвестиционного проекта.
В этих случаях необходимо рассчитывать внутренний процент, который показывает, насколько рентабельной является инвестиция.
Понятие нормы окупаемости и способ ее определения
Ключевым показателем для определения того, насколько эффективным является вложение, выступает внутренняя норма доходности инвестиционного проекта. Это означает, что размер доходов, получаемых от осуществления инвестиционной деятельности, должен быть равен размеру вложений. В этом случае поток платежей будет равен нулю.
Существует два пути определения коэффициента окупаемости. Первый из них заключается в том, чтобы рассчитывать внутреннюю норму доходности инвестиционного проекта при условии, что чистая стоимость — 0. Однако бывают случаи, когда этот показатель выше или ниже нуля. В этой ситуации необходимо «играть» с калькуляционным процентом, повышая или понижая его значение.
Надо найти две калькуляционные ставки, при которых показатель чистой текущей стоимости будет иметь минимально отрицательное и минимально положительное значения. В этом случае коэффициент окупаемости может быть найдет как среднее арифиметическое двух калькуляционных процентных ставок.
Роль текущей стоимость в расчете нормы окупаемости
Текущая стоимость играет ключевую роль при определении внутренней нормы доходности инвестиционного проекта. На основе формулы для ее определения осуществляется и расчет внутренней нормы доходности инвестиционного проекта.
С метода текущей стоимости известно, что текущая стоимость равна нулю означает, что вложенный капитал возвращается с приростом на уровне калькуляционного процента. При определении внутреннего процента определяется такая процентная ставка, при использовании которой текущая стоимость ряда платежей будет равна нулю. Это означает одновременно, что текущая стоимость поступлений совпадает с текущей стоимостью выплат.
При использовании альтернативного калькуляционного процента определяется тот, который приводит к текущей стоимости равной нулю.
Расчет чистой приведенной стоимости
Как уже известно, внутренняя норма доходности инвестиционного проекта рассчитывается при использовании формулы чистой текущей стоимости, которая имеет следующий вид:
- CF – (поток платежей разница между поступлениями и расходами);
- ВНД – внутренняя норма доходности;
- t – номер периода.
Расчет окупаемости
Формула внутренней нормы доходности инвестиционного проекта выводится из той формулы, которая применяется в процессе определения чистой настоящей стоимости, и имеет следующий вид:
0 = CF / (1 + р) 1 … + … CF / (1 + ВНД) n , где
- CF – разница между поступлениями и выплатами;
- ВНД – внутренняя норма окупаемости;
- n – номер периода инвестиционного проекта.
Проблемы при расчете вручную
Если инвестиционный проект рассчитан на срок более трех лет, возникает проблема расчета внутренней нормы окупаемости посредством простого калькулятора, так как для расчета коэффициента четырехлетнего проекта возникает уравнений четвертой степени.
Есть два способа выйти из этой ситуации. Во-первых, можно воспользоваться финансовым калькулятором. Второй способ решения проблемы намного проще. Он заключается в использовании программы Excel.
Программа обладает функцией для расчета нормы окупаемости, которая называется ВСД. Для определения внутренней нормы доходности инвестиционных проектов в Excel надо выбрать функцию СД и в поле «Значение» поместить диапазон ячеек с денежным потоком.
Графический метод расчета
Инвесторы рассчитывали внутреннюю норму окупаемости задолго до того как появились первый компьютеры. Для этого они применяли графический метод.
Для того чтобы рассчитать коэффициент, сначала необходимо определить показатели чистой текущей стоимости для двух проектов, используя при том две разные процентные ставки.
По оси ординат надо отобразить разницу между поступлениями и расходами по проекту, а по осе абсцисс – калькуляционный процент инвестиционного проекта. Вид графиков может быть разным в зависимости от того, как изменяется денежный поток в течение инвестиционного проекта. В конечном итоге любой проект перестанет приносить прибыль, а его график пересечь ось абсцисс, на которой отображен калькуляционный процент. Точка, в которой график проекта пересекает ось абсцисс, и ест внутренняя норма окупаемости инвестиций.
Пример расчета внутренней нормы окупаемости
Разобрать способ определения коэффициента окупаемости вклада можно на примере банковского депозита. Допустим, его размер составляет 6 миллионов рублей. Срок депозита будет составлять три года.
Ставка капитализации составляет 10 процентов, а без капитализации – 9 процентов. Поскольку заработанные деньги будут сниматься один раз в год, то применяется ставка без капитализации, то есть 9 процентов.
Таким образом, выплата составляет 6 миллионов рублей, поступления – 6 млн * 9% = 540 тысяч рублей за первые два года. В конце третьего периода сумма выплат будет составлять 6 миллионов 540 тысяч рублей. В этом случае ВНД будет равна 9 процентов.
Если использовать 9% в качестве калькуляционного процента, показателей чистой текущей стоимости будет равен 0.
Что влияет на размер нормы окупаемости?
Внутренняя норма доходности инвестиционного проекта зависит от размеров выплат и поступлений, а также от срока самого проекта. Показатели чистой текущей стоимости и нормы окупаемости взаимосвязаны. Чем выше коэффициент, тем ниже будет значение ЧТС, и наоборот.
Однако может быть ситуация, когда связь между ЧТС и внутренней нормой доходности сложно уследить. Это случается при анализе нескольких альтернативных вариантов финансирования. Например, первый проект может быть более выгодным при одной норме окупаемости, в тоже время второй проект способен приносить больше дохода при другом коэффициенте окупаемости.
Внутренний процент
При расчетах вручную принято, внутренний процент определять с помощью интерполяции близлежащих положительных и отрицательных текущих стоимостей. При этом желательно, чтобы используемые калькуляционные проценты различались не больше, чем 5%.
Пример. Каков внутренний процент ряда платежей?
- Определяем калькуляционные проценты, которые ведут к отрицательной и положительной текущей стоимости. Чем ближе текущие стоимости к нулю, тем точнее результат.
- Определяем процент с помощью приближенной формулы (линейная интерполяция).
Формула расчета внутреннего процента имеет следующий вид:
Вп = Кпм + Ркп * (ЧТСм / Рчтс), где
Вп – внутренний процент;
- Кпм – меньший калькуляционный процент;
- Ркп – разница между меньшим и большим калькуляционным процентам;
- ЧТСм – чистая текущая стоимость при меньшем калькуляционном проценте;
- Рчтс – абсолютная разница в текущих стоимостях.
По данным таблицы можно рассчитать значение внутреннего процента. Дисконтированный поток платежей рассчитывается путем умножения коффциента дисконтирования на размер потока платежей. Сумма дисконтированных потоков платежей равна чистой текущей стоимости. Внутренний процент в этом примере равен:
13 + 1 * (207 242 / (207 242 + 69 607)) = 13,75%
Интерпретация внутреннего процента
Определенный внутренний процент можно интерпретировать:
- Если внутренний процент больше чем заданный калькуляционный процент р, то инвестиция оценивается положительно.
- Если внутренний и калькуляционный процент равны, то значит, инвестированный капитал возвращается с необходимым наращением, однако при этом не создается дополнительной прибыли.
- Если внутренний процент ниже чем р, то происходит потеря процента, потому что инвестированный капитал при альтернативном использовании получал бы больше наращения.
- Если же внутренний процент ниже 0, то происходит потеря капитала, т.е. инвестированный капитал с доходов от инвестиции возвращается только частично. Наращение процента на капитал не происходит.
Преимуществом внутреннего процента является тот факт, что он не зависит от объема инвестиции и тем самым подходит для сравнения инвестиций с разными инвестиционными объемами. Это является очень большим преимуществом по сравнению с методом текущей стоимости.
Внутренняя норма доходности инвестиционного проекта (IRR)
Доходность инвестиционного проекта является главным условием в процессе инвестирования. Она определяется статическими и динамическими показателями, абсолютными и относительными.
Абсолютные показатели сообщают инвестору, сколько он может заработать, вложив деньги в проект, а относительные показатели сообщают ему об отдаче каждого рубля его вложений.
Среди относительных показателей большую информативность имеет показатель внутренняя норма доходности инвестиционного проекта, который показывает среднюю норму доходности инвестиций за весь их жизненный цикл. Одновременно этот показатель говорит инвестору о границе доходности инвестиций, ниже которых не целесообразно инвестировать. Кроме этого, он может служить для выбора лучшего инвестиционного проекта, среди равных проектов, по другим показателям.
Расчет внутренней нормы доходности инвестиций
В математическом выражении, IRR инвестиционного проекта есть та норма доходности проекта, при которой NPV = 0, то есть затраты равны результатам. В этом случае инвестор ничего не теряет, но ничего и не выигрывает от вложений. Та процентная ставка, при которой это происходит, может служить допустимой ставкой дисконтирования денежных потоков при расчете показателей экономической эффективности инвестиционных проектов. При такой ставке соблюдается уравнение:
IRR — внутренняя норма доходности инвестиционного проекта.
Инвестиционный выбор среди вариантов инвестирования будет принадлежать варианту с большей внутренней нормой доходности. А при оценке целесообразности инвестирования в единичный проект внутренняя норма доходности должна превышать средневзвешенную стоимость инвестиционных ресурсов. То есть, любые инвестиционные решения при норме доходности ниже IRR должны отвергаться инвестором.
Данный показатель имеет вид нелинейной функции и определяется двумя способами: графическим и методом итераций. Метод итераций, это подбор варианта нормы доходности, при которой инвестиционный капитал равен инвестиционным доходам. Математический алгоритм расчета показателя достаточно прост и компьютер легко справляется с этой задачей. А графический метод дает наглядность расчета внутренней нормы доходности. Для этого строится график NPV(r).
На вышеприведенном рисунке по оси абсцисс откладывается величины NPV, а по оси ординат норма доходности. Выбираем две точки около пересечения кривой с осью ординат. Принимаем, что на этом участке изменения параметров носят линейный характер. Тогда можно рассчитать IRR следующим образом:
Пример графического расчета IRR
Инвестиции в проект составили 115 млн. рублей.
- 1-й год работы принес чистый доход 32 млн. рублей;
- 2-й год – 41 млн. рублей;
- 3-й год – 44 млн. рублей;
- 4-й год – 38 млн. рублей.
Выбираем у точки пересечения функции NPV(r) ось ординат положения точеки ra и rb. ra=10%, а rb=15%.Далее определим NPV для каждой из обозначенных точек:
Если совокупная стоимость капитала равна 11%, проект достоин рассмотрения инвестором.
Расчет упрощается при использовании табулированных значений дисконтируемых множителей, публикуемых в интернете, обычно с шагом в 1%. С их помощью также рассчитывают NPVaи NPVb с шагом в 1% и определяется IRR.
Если инвестиции вкладываются в инвестируемый объект с условием реинвестирования прибыли, то если имеет высокий уровень или существенно отличается от стоимости капитала инвестируемого объекта, реинвестирование по норме сильно исказит реальную картину.
Расчет модифицированной внутренней нормы доходности
Данная ситуация регулируется введением показателя: модифицированная норма доходности инвестиций MIRR. При расчете данного показателя реинвестирование осуществляется по ставке дисконтирования, ориентированной на совокупную стоимость капитала именуемой чистой терминальной стоимостью NTV (Net Terminal Value), а исходящие денежные потоки дисконтируются по ставке IRR.
Все очень логично – реинвестиции это те же инвестиции, поэтому они, как и инвестиции, дисконтируются по совокупной стоимости капитала инвестируемого объекта, ставке дисконтирования r.
Поэтому формула расчета модифицированной нормы доходности инвестиций приобретает следующий вид:
- d – средневзвешенная стоимость капитала;
- r – ставка дисконтирования;
- CFt – денежные притоки в t-ый год жизни проекта;
- ICt – инвестиционные денежные потоки в t-ый год жизни проекта;
- n – срок жизненного цикла проекта.
Оценка проектов по вышеназванным показателям дает возможность их сопоставления вне зависимости от размеров инвестиций, масштабов самих проектов, сроков реализации инвестиционных проектов.
То есть для всех инвестиций при превышении IRR и MIRR средневзвешенной стоимости капитала они признаются эффективными, хотя необходима обязательно абсолютная оценка их доходности. А при сравнении инвестиционных проектов между собой, выбирается вариант с наибольшими значениями этих показателей.
Модифицированная норма доходности, как и внутренняя норма доходности инвестируемого капитала, имеет один существенный недостаток. Она не дает реальной картины при поступающих знакопеременных денежных потоках. Такая ситуация довольно часто возникает при инвестировании в несколько временных периодов.
Трудности расчета этого показателя возникают и при изменении ставки рефинансирования проекта во времени. Расчет показателя возможен, но методически и технически затруднителен.
Источник https://businessman.ru/vnutrennyaya-norma-dohodnosti-investitsionnogo-proekta-formula.html
Источник https://kudainvestiruem.ru/proekt/irr.html
Источник
Источник